Spaces of quasi-maps into the flag varieties and their applications
نویسنده
چکیده
Given a projective variety X and a smooth projective curve C one may consider the moduli space of maps C → X. This space admits certain compactification whose points are called quasi-maps. In the last decade it has been discovered that in the case when X is a (partial) flag variety of a semi-simple algebraic group G (or, more generally, of any symmetrizable Kac-Moody Lie algebra) these compactifications play an important role in such fields as geometric representation theory, geometric Langlands correspondence, geometry and topology of moduli spaces of G-bundles on algebraic surfaces, 4-dimensional super-symmetric gauge theory (and probably many others). This paper is a survey of the recent results about quasi-maps as well as their applications in different branches of representation theory and algebraic geometry. Mathematics Subject Classification (2000). Primary 22E46; Secondary 14J60,
منابع مشابه
The Tautological Rings of the Moduli Spaces of Stable Maps to Flag Varieties
We show that the rational cohomology classes on the moduli spaces of genus zero stable maps to SL flag varieties are tautological. The Kontsevich moduli stacks of stable maps arise as generalizations of the classical Deligne-Mumford spaces of stable curves. Their intersection theory has been intensively studied in the last decade in relation to enumerative geometry and string theory. Partial re...
متن کاملOn quasi $P$-spaces and their applications in submaximal and nodec spaces
A topological space is called submaximal if each of its dense subsets is open and is called nodec if each of its nowhere dense ea subsets is closed. Here, we study a variety of spaces some of which have already been studied in $C(X)$. Among them are, most importantly, quasi $P$-spaces and pointwise quasi $P$-spaces. We obtain some new useful topological characterizations of quasi $...
متن کاملDivisors on the Moduli Spaces of Stable Maps to Flag Varieties and Reconstruction
We determine generators for the codimension 1 Chow group of the moduli spaces of genus zero stable maps to flag varieties G/P . In the case of SL flags, we find all relations between our generators, showing that they essentially come from M0,n. In addition, we analyze the codimension 2 classes on the moduli spaces of stable maps to Grassmannians and prove a new codimension 2 relation. This will...
متن کاملRestriction Varieties and Geometric Branching Rules
This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give ...
متن کاملLectures on the geometry of flag varieties
In these notes, we present some fundamental results concerning flag varieties and their Schubert varieties. By a flag variety, we mean a complex projective algebraic variety X, homogeneous under a complex linear algebraic group. The orbits of a Borel subgroup form a stratification of X into Schubert cells. These are isomorphic to affine spaces; their closures in X are the Schubert varieties, ge...
متن کامل